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APPENDIX

A. OPTIMAL RISK STRATIFICATION RULE

To show the optimality of Ropt(z), we note that an optimal rule assigns subjects with

Z = z to the kth risk category if and only if for any l 6= k,

Cz(k) = E {Y c1k + (1− Y )c0k | Z = z} 6 E {Y c1l + (1− Y )c0l | Z = z} = Cz(l).

This implies that for any l 6= k,

µ0(z)c1k + {1− µ0(z)}c0k 6 µ0(z)c1l + {1− µ0(z)}c0l

and thus µ0(z){(c1k−c0k)−(c1l−cl)} 6 cl−c0k. Coupled with the fact that c1k−c0k >

c1l−cl, l > k and c1k−c0k < C
(1)
l′ −cl, l′ < k, we have Pkl′ 6 µ0(z) 6 Pkl, for any pair

of (l′, l) such that l′ < k < l. It follows that the optimal rule would assign a subject with

Z = z to the kth category if and only if max06l6k−1 Pkl 6 µ0(z) 6 mink+16l6K+1 Pkl.

If max06l6k−1 Pkl 6 µ0(z) 6 mink+16l6K+1 Pkl and max06l6k′−1 Pk′l 6 µ0(z) 6

mink′+16l6K+1 Pk′l, then the expected costs associated with assigning subjects with

µ0(z) to the kth category and to k′th category are equal. For such settings, without loss

of generality, one may assign such subjects to category min(k, k′). This concludes that

Ropt(z) minimizes Cz(R).

B. ASYMPTOTIC DERIVATION FOR THE ESTIMATED EXPECTED COST

We assume that the true conditional risk function µ0(z) is continuously differentiable

with derivative function dµ0(z)/dz bounded away from 0 almost everywhere. Through-
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out, we also assume that the bandwidth h = O(n−ν) with 1/5 6 ν < 1/2. Let

C̃(m,H) = n−1
∑n

i=1 Ci(m,H), C(m,H) = E{C̃(m,H)}, where Vi(t) = I(Xi 6

t)δi+I(Xi > t) and Ci(m,H) = η{Yi,m(Zi)}Vi(t)/H(t∧Xi). Then C(m) = C(m,G)

and C̃(m) = C̃(m, Ĝ). We first write

∣∣∣∣∣n−1
n∑
i=1

Ci(µ̃, Ĝ)− C(µ0)

∣∣∣∣∣ 6
∣∣∣∣∣n−1

n∑
i=1

{
Ci(µ̃, Ĝ)− Ci(µ0, G)

}∣∣∣∣∣
+

∣∣∣∣∣n−1
n∑
i=1

Ci(µ0, G)− C(µ0)

∣∣∣∣∣ .
By a law of large numbers, n−1

∑n
i=1 Ci(µ0, G) − C(µ0) = op(1). Thus, a sufficient

condition for the consistency of C̃(µ̃) is that n−1
∑n

i=1{Ci(µ̃, Ĝ)− Ci(µ0, G)} = op(1).

To show that this condition holds, we note that since η{Yi,m(Zi)} is bounded by a con-

stant η0, |n−1
∑n

i=1{Ci(µ̃, Ĝ)−Ci(µ̃, G)}| 6 n−1
∑n

i=1 η0|Ĝ(t∧Xi)
−1−G(t∧Xi)

−1|.

This and the uniform consistency of Ĝ(·) (Kalbfleisch and Prentice, 2002) imply that

n−1
∑n

i=1{Ci(µ̃, Ĝ)−Ci(µ̃, G)} = op(1). It remains to show that n−1
∑n

i=1{Ci(µ̃, G)−

Ci(µ0, G)} = op(1). This convergence holds if for any given non-negative bounded

function ξ(·, ·),

ε̃ξk = n−1
n∑
i=1

{I(µ̃(Zi) > pk)− I(µ0(Zi) > pk)}ξ(Xi, Di) = op(1), (B.1)

To show (B.1), we let Aξ(u) = E[I{µ0(Zi) > u}ξ(Xi, Di)], ε̃µ = supz |µ̃(z) −

µ0(z)|, ε̃A = supu |n−1
∑n

i=1 I{µ0(Zi) > u}ξ(Xi, Di) − Aξ(u)|, and note that |ε̃ξk| 6

n−1
∑n

i=1 I{pk+ε̃µ > µ0(Zi) > pk−ε̃µ}ξ(Xi, Di) 6 2ε̃A+|Aξ(pk+ε̃µ)−Aξ(pk−ε̃µ)|.

By a uniform law of large numbers (Pollard, 1990), ε̃A = op(1). On the other hand, using

the same arguments as given in Cai et al (2008), we have ε̃µ = op(n
−1/4). This, together
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with the continuity ofAξ(u), implies that ε̃ξk = op(1) and hence the consistency of C̃(µ̃).

To derive the asymptotic distribution for W̃ = n
1
2{C̃(µ̃) − C(µ0)} = n

1
2{C̃(µ̃, Ĝ) −

C(µ0, G)}, we write W̃ = W̃1 +W̃2 +W̃3, where W̃1 = n
1
2{C̃(µ̃, Ĝ)− C̃(µ̃, G)}, W̃2 =

n
1
2{C̃(µ̃, G) − C̃(µ0, G)}, W̃3 = n

1
2{C̃(µ0, G) − C(µ0, G)}. For W̃1, we first note that

for s 6 t,

n
1
2

{
G(s)

Ĝ(s)
− 1

}
' n−

1
2

n∑
i=1

∫ s

0

dMi(u)

pr(X > u)
(B.2)

converges weakly to a zero-mean Gaussian process indexed by s (Kalbfleisch and Pren-

tice, 2002), where Mi(u) = I(Xi 6 u, δi = 0)−
∫ u
0
I(Xi > u)dΛC(u) and ΛC(·) is the

cumulative hazard function for the common censoring variable C. It follows that W̃1 is

asymptotically equivalent to

n−
1
2

n∑
i=1

{∫ t

0

γ(u)dMi(u)

}
, (B.3)

where γ(u) = E[η{Y, µ0(Z)}I(T > u)]/pr(X > u).

For W̃2, we write

W̃2 = n−
1
2

n∑
i=1

K−1∑
k=1

d0kwi{1− p−1k Yi} [I{µ̃(Zi) > pk} − I{µ0(Zi) > pk}]

=
K−1∑
k=1

∫
[I{µ̃(z) > pk} − I{µ0(z) > pk}] dn1/2Ĥk(z)

where wi = Vi(t)/G(t ∧Xi) and Ĥk(z) = n−1
∑n

i=1 d0kwi{1− p
−1
k Yi}I(Zi 6 z). By a

standard empirical process theory (Pollard, 1990) n
1
2{Ĥk(z)−H̃k(z)} converges weakly

to a zero-mean Gaussian process, where H̃k(z) = n−1
∑n

i=1 d0k{1− p
−1
k µ0(Zi)}I(Zi 6

z). This, together with Lemma 1 of Bilias and others (1997), implies that W̃2 is asymp-
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totically equivalent to ε̃1 + ε̃2, where

ε̃1 = n−
1
2

n∑
i=1

K−1∑
k=1

d0k{1− p−1k µ0(Zi)}I{µ̃(Zi) > pk, µ0(Zi) 6 pk}

ε̃2 = −n−
1
2

n∑
i=1

K−1∑
k=1

d0k{1− p−1k µ0(Zi)}I{µ̃(Zi) 6 pk, µ0(Zi) > pk}

It follows from ε̃µ = supz |µ̃(z)− µ0(z)| = op(n
−1/4) that

0 6 ε̃1 6 n−
1
2

n∑
i=1

K−1∑
k=1

d0k{1− p−1k µ0(Zi)} [I{µ0(Zi) > pk − ε̃µ} − I{µ0(Zi) > pk}] .

Furthermore, the process Γ(t) = n−
1
2

∑n
i=1

∑K−1
k=1 [d0k{1 − p−1k µ0(Zi)}[I{µ0(Zi) >

pk− t}−I{µ0(Zi) > pk}]−{ζ(p+ t)− ζ(p)}] is stochastic continuous at t = 0, where

ζ(p̄) = E

[
K−1∑
k=1

d0k{1− p−1k µ0(Z)}I{µ0(Z) > p̄k}

]
, p̄ = (p̄1, · · · , p̄K)′,

and p = (p1, · · · , pK)′. Thus, ε̂1 is bounded above by sup|t|6ε̂m n
1/2{ζ(p + t)− ζ(p)}.

Now, since the expected cost function ζ(p̄) is minimized at p̄ = p, ∂ζ(p̄)/∂p̄ = 0 when

p̄ = p. Therefore, 0 6 ε̃1 6 Op(n
1/2ε̃2µ) and thus ε̃1 = op(1). Similarly, ε̃2 = op(1). It

follows that W̃2 = op(1). This, combined with (B.3), implies that W̃ ' n−
1
2

∑n
i=1Wi,

where ψWi =
∫ t
0
γ(u)dMi(u) + Ci(µ0, G)− C(µ0, G). By a Central Limit Theorem, W̃

converges to a normal with mean 0 and variance σ2 = E(ψ2
Wi).

C. ASYMPTOTIC PROPERTIES OF Ĉ(µ̂β̂)

In this section, we show that Ĉ(µ̂β̂) converges to C(µβ0
) in probability as n → ∞ and

derive the asymptotic distribution for Ŵ. We assume that Z is bounded and µβ(x) is con-
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tinuously differentiable with respect to both β and x and ∂µβ0
(x)/∂x is bounded away

from 0 almost everywhere. Furthermore, we assume that βT

0Z is a continuous random

variable with a continuously differentiable density. The consistency of Ĉ(µ̂β̂) follows

from the same arguments as given in Appendix B provided that ε̂m = supZ |µ̂β̂(Z) −

µβ0
(Z)| = op(n

−1/4). Thus, it remains to establish the convergence rate of ε̂m. To this

end, we note that

ε̂m 6 sup
x
|g0{θ̂β̂(x)} − g0{θβ0

(x)}|+ sup
Z
|g0{θβ0

(β̂
T

Z)} − g0{θβ0
(βT

0Z)}|.

where θβ(x) = g−10 {pr(Yi = 1|βTZ = x)}. From Uno et al (2007) and Cai et al (2008),

we have

n
1
2 (β̂ − β0) = n−

1
2

n∑
i=1

WBi + op(1) = Op(1), (C.1)

and sup
x
|θ̂β̂(x)− θβ0

(x)| = Op{(nh)−
1
2 log(n)2}, (C.2)

where WBi = A−1
[
wiZi{Yi−g(βT

0Zi)}+

∫ t

0

γB(u)dMi(u)

]
,

A = E{ġ(βT

0Zi)ZiZ
T

i }, γB(u) =
E [Zi{Yi − g(βT

0Zi)}I(Ti > u)]

pr(X > u)
,

and ġ(x) = dg(x)/dx. This, together with the boundedness of ∂µβ0
(x)/∂x and Z, im-

plies that

ε̂m 6 Op{(nh)−
1
2 log(n)2 + n−

1
2} = op(n

−1/4),

since h−1 = op(n
1/2). The consistency of Ĉ(µ̂β̂) follows immediately.

To approximate the distribution of Ŵ = n
1
2{Ĉ(µ̂β̂)−C(µβ0

)}, we write Ŵ = Ŵ1 +

Ŵ2 +Ŵ3, where Ŵ1 = n
1
2{Ĉ(µ̂β̂, Ĝ)− Ĉ(µ̂β̂, G)}, Ŵ2 = n

1
2{Ĉ(µ̂β̂, G)− Ĉ(µβ0

, G)},
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Ŵ3 = n
1
2{Ĉ(µβ0

, G)− C(µβ0
)},

Ĉ(µ,G) = n−1
n∑
i=1

Ci(µ,H), and Ci(µ,H) =
Vi(t)η{Yi, µ(Zi)}

H(t ∧Xi)
.

Following similar arguments as given in Appendix B with the uniform consistency of

µ̂β̂(x) given in (C.2), we have

Ŵ1 = n−
1
2

n∑
i=1

∫ t

0

γC(u)dMi(u) + op(1)

where γC(u) = E[η{Yi, µβ0
(Zi)}I(T > u)]/pr(X > u). Next, we express Ŵ2 as

K−1∑
k=1

(∫
I[g0{θ̂β̂(x)} > pk−1]dĤk(x; β̂)−

∫
I[g0{θβ0

(x)} > pk−1]dĤk(x;β0)

)

=
K−1∑
k=1

∫ (
I[g0{θ̂β̂(x)} > pk−1]− I[g0{θβ0

(x)} > pk−1]
)
dn

1
2 Ĥk(x; β̂)

+
K−1∑
k=1

∫
I[g0{θβ0

(x)} > pk−1]dn
1
2

{
Ĥk(x; β̂)− Ĥk(x;β0)

}

where Ĥk(x;β) = n−1
∑n

i=1 d0kwi(1 − Yip
−1
k )I(βTZi 6 x). It follows from the stan-

dard empirical process theory (Pollard, 1990) and the convergence of n
1
2 (β̂−β0) given

in (C.1) that n
1
2{Ĥk(x; β̂)−H̃k(x;β0)} converges weakly to a zero mean Gaussian pro-

cess, where H̃k(x;β0) = n−1
∑n

i=1 d0kwi{1−µβ0
(Zi)p

−1
k }I(βT

0Zi 6 x). This, together

with same arguments as given in Appendix B, implies that

K−1∑
k=1

∫ (
I[g0{θ̂β̂(x)} > pk−1]− I[g0{θβ0

(x)} > pk−1]
)
dn

1
2 Ĥk(x; β̂) = op(1)
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Furthermore, let H̄k(x;β) = E{Ĥk(x;β)}. It follows from the functional central limit

theorem (Pollard, 1990) that n
1
2{Ĥk(x;β)−H̄k(x;β)} converges weakly to a zero mean

Gaussian process in (x,β) and thus is equicontinuous in β. Combining this with the

expansion for β̂ given in (C.1), we have

n
1
2{Ĥk(x; β̂)−Ĥk(x;β0)} = Ak(x;β0)

Tn
1
2 (β̂−β0)+op(1) = n−

1
2

n∑
i=1

WT

BiAk(x;β0)

Ak(x;β) = ∂H̄k(x;β)/∂β. It follows that

Ŵ2 = n−
1
2

n∑
i=1

WT

Bi

(
K−1∑
k=1

∫
I[g0{θβ0

(x)} > pk−1]dAk(x;β0)

)
+ op(1).

Therefore, Ŵ = n−
1
2

∑n
i=1 ζWi + op(1), where

ζWi =

∫ t

0

γC(u)dMi(u) + WT

Bi

K−1∑
k=1

∫
I[g0{θβ0

(x)} > pk−1]dAk(x;β0)

+ Ci(µβ0
, G)− C(µβ0

). (C.3)

Then it follows from a central limit theorem that Ŵ converges in distribution to a normal

with variance E(ζ2Wi).
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